

Monthly Generation Performance Report

August 2023

Introduction

As part of the Transmission and Distribution System Operation and Maintenance Agreement (OMA), LUMA serves as both the operator of the electric grid and as the island's System Operator.

As the Operator of the electric grid, LUMA oversees and maintains the transmission and distribution system that is critical to delivering energy to over 1.5 million Puerto Rican customers.

As the System Operator, LUMA monitors the performance of GeneraPR and other private generators' generation units, implements dispatch of available units, and plans and maintains adequate generation reserve levels to meet customer's energy demands.

While LUMA does not generate energy, LUMA's responsibility as the System Operator includes measuring the performance of the island's generation fleet. This report summarizes generation performance, identifies trends, compares facility performance, and provides a high-level picture of the entire generation portfolio.

Table of Contents

Executive Summary

Operations

- System Level Performance
 - System Reserve Status
 - System Heat Rate
 - o System Availability
- Plant/Unit Level Performance
 - Available Capacity
 - o Heat Rate
 - Generation and Capacity Factor
 - Planned Outage Hours
 - Maintenance Outage Hours
 - Forced Outage Hours
 - o Renewables Capacity Factor

Economics

- Fuel Prices
- Fuel Production Costs

About This Report

- Glossary of Terms
- Plant and Unit List

Executive Summary – August Performance

Overview

The Maximum Peak Demand for August 2023 is approximately 3254 MW.

There are no units scheduled to be taken offline for repair in August. Costa Sur 5 is in an outage and expected back by October 7. San Juan 7 and Aguirre 1 are both currently in outages and do not have a return date.

Looking back on this month, there were only a couple of times customers lost power due to unanticipated breakdowns from San Juan CC 6 and the FEMA Units.

Major Events

In August, the electric system experienced 3 load shed events due to generation shortfall, and 4 generation events that caused underfrequency load shed to prevent a frequency decay.

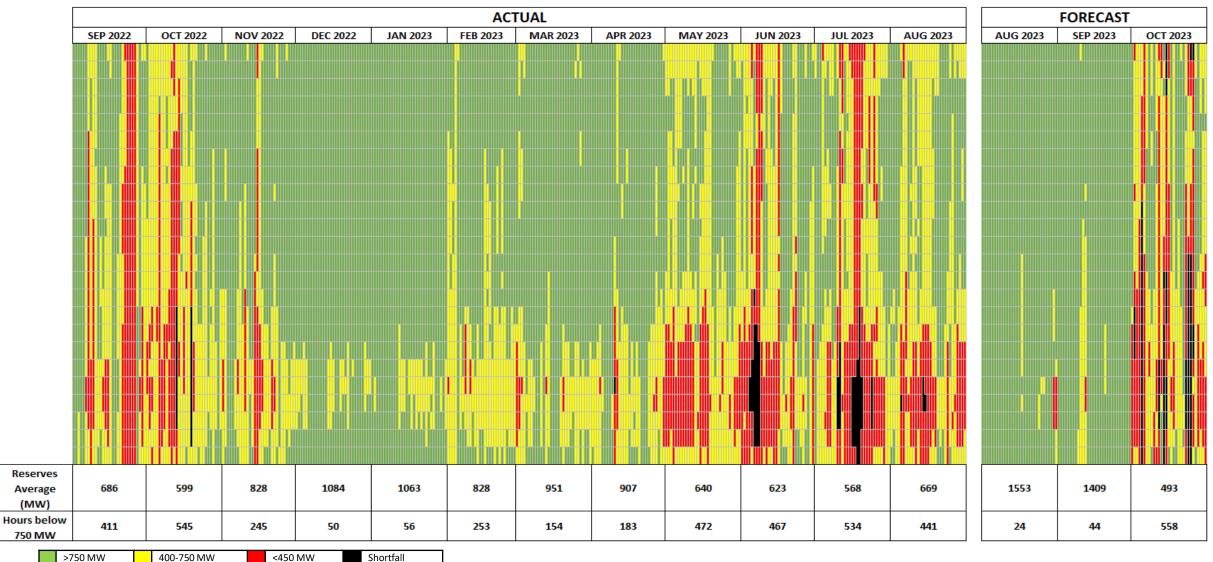
System Reserves

In August, the hourly reserve levels averaged 669 MW, with 441 hours during the month having less than 750 MW in reserves (equal to 59% of the time.)

Without the additional 150 MW of generation from the Palo Seco FEMA units, the electric system would have experienced 7 additional load shed events due to generation shortfall this month.

The forecast for September 2023 shows higher reserve levels to the same month last year (September 2022), with 1,409 MW average reserves forecasted versus 686 MW seen for the same month last year.

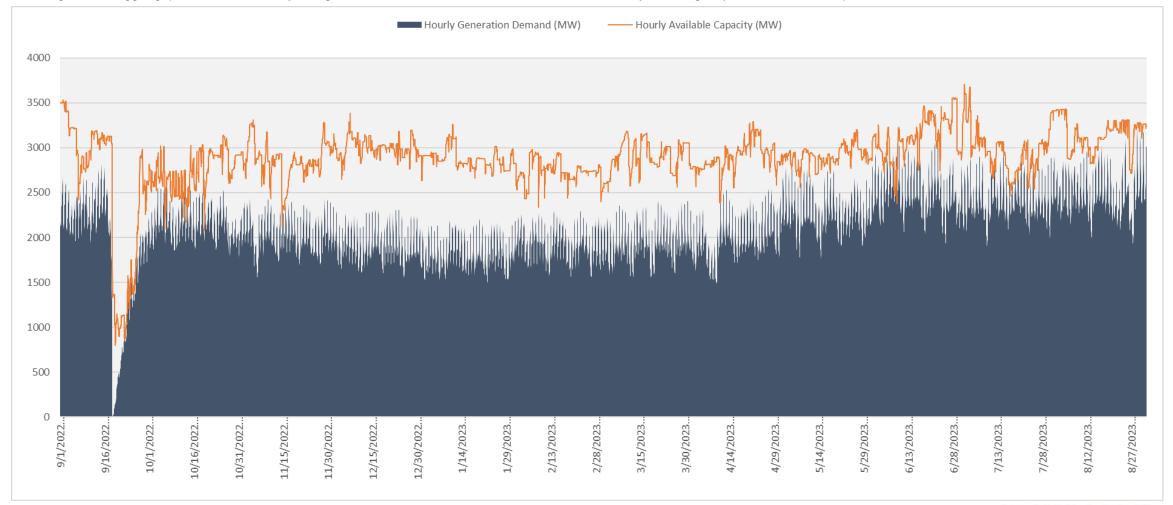
The System Availability for the month of August was 60%.


- PREPA 52%
- AES 88%
- EcoEléctrica 96%

System Reserves

System Reserves is the amount of generating capacity available to meet peak or abnormally high demands for power and to generate power during scheduled or unscheduled outages.

Target: A Reserves >750MW per the System Operation Principles



*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

System Availability

The System Availability is the maximum expected output that generating units can supply to system load, adjusted for scheduled or unscheduled outages. In this graph, the availability is being compared with the total generation required to meet demand to visualize the gap between the two lines (the gap represents the reserves level).

Target: A bigger gap between availability and generation demand means a better chance of recovery in emergency events due to adequate reserves.

• The dip in availability and generation in September is due to the passing of Hurricane Fiona.

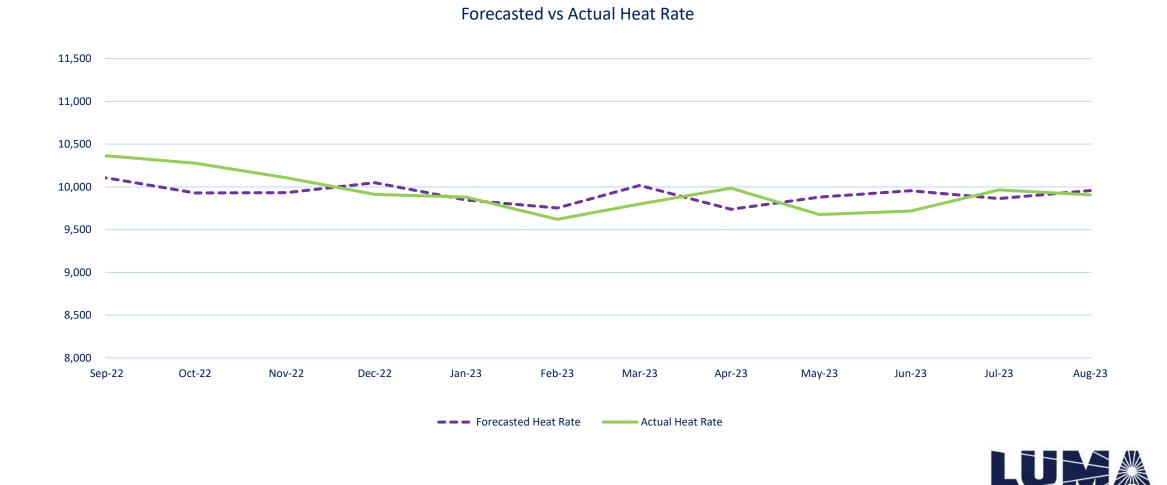
Load Shed Events

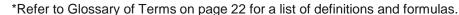
LUMAPR.COM

Load shed events can occur due to unexpected generation unit losses (Unit Performance Load Shed Events). Also, when the demand for electricity exceeds available supply levels, LUMA, as the system operator and in compliance with its responsibilities under the T&D OMA, implements load shedding to stabilize the electric system and prevent larger and longer outages (Generation Shortfall Events).

LUMA does not generate energy and can only operate the system with the electricity that is provided by GeneraPR, PREPA, and other island generators.

3,000 2,500 2,000 1,500 1,000 **Generation Demand** 500 0 Sep-22 0ct-22 NOV-22 Dec-22 1an-23 Feb-23 Mar-23 Apr-23 May-23 Jun-23 AUB-23 AUB-22 141-23 August **Average Customers** Average Average Average **Rolling 12 Months Total Events Total Events Customers Affected** (August 1, 2023 – August 31, 2023) Affected Duration (min) (August 1, 2022 - August 31, 2023) Duration (min) **Generation Shortfall Events** 8,166 35 3 23 97.790 191 **Generation Shortfall Events** Unit Performance Load Shed Events 92.802 13 4 61 102.658 31 Unit Performance Load Shed Events


Total Load Shed Events: 84


*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

System Heat Rate

The System Heat Rate measures the efficiency of the system to convert fuel into electricity. System Heat Rate will vary depending on the available generation units and required resources to satisfy electrical demand. It is calculated as energy consumed (MMBtu) / energy produced (MWh). The forecasted Heat Rate is determined by the last forecast calculated for the Fuel Clause Adjustment Factor.

Target: **V** Lower heat rates represent higher efficiency.

Available Capacity – Baseload Units

Available Capacity is the maximum output that a unit can generate at any given time. The Availability Rate indicates the percent of available capacity out of the total nameplate capacity. Variables in the chart below are shown in MW (gross) representing an average over the month.

Target: A higher availability indicates the plant is able to produce power closer to its nameplate capacity.

	Available Capacity (MW) and Availability Rate (AR)	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
AES	510	302	452	391	426	438	256	333	323	425	435	285	449
Nameplate Cap: 508	SONDJFMAMJJA	59%	89%	77%	84%	86%	50%	66%	64%	84%	86%	56%	88%
EcoElectrica	550	395	452	550	550	550	550	315	380	550	544	552	530
Nameplate Cap: 550	SONDJFMAMJJA	72%	82%	100%	100%	100%	100%	57%	69%	100%	99%	100%	96%
PREPA Aguirre	900	175	180	107	350	128	0	243	307	84	321	274	343
Nameplate Cap: 900	SONDJFMAMJJA	19%	20%	12%	39%	14%	0%	27%	34%	9%	36%	30%	38%
PREPA Costa Sur	320	477	324	586	568	532	524	616	536	442	479	221	347
Nameplate Cap: 820	SONDJFMAMJJA	58%	40%	71%	69%	65%	64%	75%	65%	54%	58%	27%	42%
PREPA Palo Seco	602 301	146	452	391	426	438	256	333	323	425	435	285	449
Nameplate Cap: 602	SONDJFMAMJJA	24%	75%	65%	71%	73%	43%	55%	54%	71%	72%	47%	75%
PREPA San Juan		403	427	385	167	445	662	614	571	571	638	700	659
Nameplate Cap: 840	S O N D J F M A M J J A	48%	51%	46%	20%	53%	79%	73%	68%	68%	76%	83%	78%
FEMA Palo Seco	150 75	0	0	0	0	0	0	0	0	0	0	149	145
Nameplate Cap: 150	SONDJFMAMJJA	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	99%	97%
Total Baseload	4200	1898	2287	2410	2488	2531	2249	2455	2441	2497	2853	2467	2923
Nameplate Cap: 4370	SONDJFMAMJJA	45%	54%	57%	59%	60%	53%	58%	58%	59%	68%	56%	67%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Available Capacity – Peaker Units

Available Capacity is the maximum output that a unit can generate at any given time. The Availability Rate indicates the percent of available capacity out of the total nameplate capacity. Variables in the chart below are shown in MW representing an average over the month.

Target: A higher availability indicates the plant is able to produce power closer to its nameplate capacity.

	Ava	vail	able C	apad	city (I	MW)	and	Avail	labili	ty R	ate (A	R)	s	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
PREPA Aguirre Combined Cycle	592 296 0	6				_							MM	171	202	166	65	0	81	95	137	190	193	191	199
Nameplate Cap: 592			S O	Ν	D	J F	Μ	А	М	1	J A		AR	29%	34%	28%	11%	0%	14%	16%	23%	32%	33%	32%	34%
PREPA Cambalache	248 124 0	4						_	_				MM	146	152	146	156	151	136	136	113	155	146	152	142
Nameplate Cap: 248	-		s o	N	D	JF	M	A	М	1	JA		AR	59%	62%	59%	63%	61%	55%	55%	46%	63%	59%	61%	57%
PREPA Mayaguez	220 110 0	0 -											MM	37	37	29	37	38	38	33	40	37	35	28	29
Nameplate Cap: 220	0		s o	Ν	D	J F	M	А	М	1	JA		AR	17%	17%	13%	17%	17%	17%	15%	18%	17%	16%	13%	13%
PREPA Palo Seco (Inc. Mobile- Pack)	208 104 0	4 -	-										MM	148	175	177	170	177	177	178	178	165	162	175	192
Nameplate Cap: 207	-		s o	Ν	D	JF	м	A	М	1	JA		AR	71%	84%	85%	82%	85%	86%	86%	86%	80%	78%	85%	93%
Other Peakers	264 132 0	2 -											MM	68	68	71	73	69	76	78	59	57	55	71	69
Nameplate Cap: 264	0		S O	Ν	D	JF	M	А	М	1	J A		AR	26%	26%	27%	28%	26%	29%	30%	22%	22%	21%	27%	26%
Total Peakers	1532 766												MM	569	634	589	501	435	508	520	527	604	591	617	631
Nameplate Cap: 1531	0		s o	N	D	JF	М	А	М	J	J A		AR	37%	41%	38%	33%	28%	33%	34%	34%	39%	39%	40%	41%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Heat Rate – Baseload Units

Heat Rate measures the efficiency of a power plant to convert fuel into electricity. It is calculated as energy consumed (MMBtu) / energy produced (MWh).

Target: **V** Lower heat rates represent higher efficiency.

			Heat Rat	e (MME	3tu/MWh)	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
AES	6,000 0	S O N D J			J A	9,800	9,800	9,800	9,800	9,800	9,800	9,800	9,800	9,800	9,800	9,800	9,800
EcoElectrica	6,000	S O N D J			J A	7,683	7,932	7,932	7,932	7,932	7,945	7,945	7,945	7,945	7,945	7,945	7,945
PREPA Aguirre	6,000 0	S O N D J	F M A	M J	J A	10,935	11,486	12,016	10,957	10,699	-	11,230	11,075	12,205	10,741	11,494	11,061
PREPA Costa Sur	6,000 0	S O N D J				10,749	10,724	10,736	10,845	10,909	11,408	10,995	11,249	11,281	11,095	12,327	10,955
PREPA Palo Seco	6,000 0	S O N D J				9,865	10,960	9,876	10,131	10,483	10,363	10,223	10,229	10,614	10,474	10,573	10,785
PREPA San Juan	6,000 0	S O N D J			JA	10,271	11,417	11,404	11,603	10,559	9,869	8,345	8,751	8,308	8,566	8,729	8,772
Total Baseload	12,000 6,000 0				JA	9,846	10,156	10,049	9,982	9,931	9,866	9,761	9,860	9,662	9,626	8,987	8,951

• The FEMA Palo Seco units are not included as not all the units' consumption is included in the Genera Fuel Report

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Heat Rate – Peaker Units

Heat Rate measures the efficiency of a power plant to convert fuel into electricity. It is calculated as energy consumed (MMBtu) / energy produced (MWh).

Target: **V** Lower heat rates represent higher efficiency.

			Heat Rate (MMBtu/MWh)	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
PREPA Aguirre Combined Cycle	18,000 - 12,000 - 6,000 - 0 -	S O N D J	F M A M J J A	13,170	12,150	13,145	15,978	-	15,272	13,680	15,461	15,437	15,129	14,561	15,243
PREPA Cambalache	18,000 - 12,000 - 6,000 - 0 -	S O N D J	FMAMJJA	12,481	12,646	13,185	14,794	14,509	13,971	13,264	14,206	12,887	13,005	12,504	12,965
PREPA Mayaguez	18,000 - 12,000 - 6,000 - 0 -	S O N D J	FMAMJJA	10,728	13,418	10,919	10,413	10,816	10,934	10,355	11,417	11,234	11,046	10,970	11,256
PREPA Palo Seco (Inc. Mobile Pack)	18,000 12,000 6,000 0	S O N D J	FMAMJJA	12,234	11,818	11,481	11,719	11,341	11,719	11,964	11,499	11,908	12,143	11,493	11,967
Other Peakers	18,000 12,000 6,000 0	S O N D J	F M A M J J A	14,860	15,750	14,053	15,681	16,101	17,324	15,391	14,898	14,497	13,642	13,677	15,418
Total Peakers	18,000 - 12,000 - 6,000 - 0 -		FMAMJJA	12,421	12,587	12,438	12,628	12,332	13,085	12,746	13,479	13,499	13,220	12,690	13,109

Generation and Capacity Factor – Baseload Units

Generation indicates the average amount of energy each plant produced per month, in MW (gross). The Capacity Factor measures what percentage of the nameplate capacity was used to produce energy during that time period.

Target: A Higher Capacity Factor, and a Generation closer to the nameplate capacity will represent a better utilization of the units.

	Average Generation (MW) and Capacity Factor	Se	ep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
AES	508	AW 2	266	452	390	414	414	253	314	317	426	425	281	449
Nameplate Cap: 508	SONDJFMAMJJA	ხ 5	52%	89%	77%	82%	82%	50%	62%	62%	84%	84%	55%	88%
EcoElectrica	550	MW 3	309	373	416	411	380	404	261	326	421	430	449	426
Nameplate Cap: 550	S O N D J F M A M J J A	ს 5	56%	68%	76%	75%	69%	73%	47%	59%	77%	78%	82%	78%
PREPA Aguirre	450	MW 1	155	145	83	250	87	0	191	233	74	245	231	258
Nameplate Cap: 900	S O N D J F M A M J J A	ხ 1	17%	16%	9%	28%	10%	0%	21%	26%	8%	27%	26%	29%
PREPA Costa Sur	820	AW 4	400	299	503	471	441	429	473	456	431	437	214	324
Nameplate Cap: 820	SONDJFMAMJJA	ц 4	19%	37%	61%	57%	54%	52%	58%	56%	53%	53%	26%	39%
PREPA Palo Seco	602 301	MW 1	114	149	152	258	239	261	241	231	295	207	259	130
Nameplate Cap: 602	SONDJFMAMJJA	ყ 1	19%	25%	25%	43%	40%	43%	40%	38%	49%	34%	43%	22%
PREPA San Juan	840 420 0	MW 3	353	404	365	141	293	432	363	324	371	417	470	446
Nameplate Cap: 840	SONDJFMAMJJA	ц 4	12%	48%	43%	17%	35%	51%	43%	39%	44%	50%	56%	53%
FEMA Palo Seco	150 75	MW	0	0	0	0	0	0	0	0	0	0	149	146
Nameplate Cap: 150	SONDJFMAMJJA	ь (0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	99%	97%
Total Baseload	4200	₩ 1	597	1822	1910	1945	1854	1778	1842	1886	2019	2161	2053	217
Nameplate Cap: 4370	SONDJFMAMJJA	ყ 3	38%	43%	45%	46%	44%	42%	44%	45%	48%	51%	47%	50%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Generation and Capacity Factor – Peaker Units

Generation indicates the average amount of energy each plant produced per month (MW). The Capacity Factor measures what percentage of the nameplate capacity was used to produce energy during that time period.

Target: A Higher Capacity Factor, and a Generation closer to the nameplate capacity will represent a better utilization of the units.

	Average Generation (MW) and Capacity Factor	Sep-2	2 Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
PREPA Aguirre Combined Cycle	592	₹ 80	149	76	5	0	23	28	34	103	89	112	83
Nameplate Cap: 592	SONDJFMAMJJA	ხ 14%	25%	13%	1%	0%	4%	5%	6%	17%	15%	19%	14%
PREPA Cambalache	248	€ 63	53	22	10	7	18	21	19	44	44	83	69
Nameplate Cap: 247.5		ხ 25%	21%	9%	4%	3%	7%	8%	8%	18%	18%	33%	28%
PREPA Mayaguez		§ 53	46	51	18	8	23	17	26	55	56	88	64
Nameplate Cap: 220	SONDJFMAMJJA	ხ 24%	21%	23%	8%	4%	10%	8%	12%	25%	26%	40%	29%
PREPA Palo Seco (Inc. Mobile-Pack)		€ 39	62	21	4	8	17	17	16	37	40	55	70
Nameplate Cap: 207	SONDJFMAMJJA	ხ 19%	30%	10%	2%	4%	8%	8%	7%	18%	19%	26%	34%
Other Peakers (PREPA)	264 132	€ 14	23	16	2	1	2	7	3	10	11	22	13
Nameplate Cap: 264	SONDJFMAMJJA	ხ 5%	9%	6%	1%	0%	1%	3%	1%	4%	4%	8%	5%
Total Peakers	\sim	₹ 249	332	186	39	24	83	90	98	248	241	359	299
Nameplate Cap: 1530.5	S O N D J F M A M J J A	ხ 16%	22%	12%	3%	2%	5%	6%	6%	16%	16%	23%	20%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Planned Outage Hours – Baseload Units

Planned Outage Hours represents the shutdown of a generating unit or facility for inspection or maintenance, in accordance with an advance schedule; represented in hours. This scoreboard compares the scheduled outage hours with the actual duration of the outage.

Target: **V** A smaller gap between actuals and planned hours represents a more accurate planification.

	Planned Outage Hours (SEP 2022 - AUG 2023)	Planned Outage Hours	Completed Outage Hours	Notes for In-Progress Planned Outages	Expected Return-to- Service Date
AES	Completed Planned 0 500 1000	672	667		
EcoElectrica	Completed Planned 0 500 1000 1500	1248	1142		
PREPA Aguirre	Completed Plan ned 0 500 1000 1500	1248	1151		
PREPA Costa Sur	Completed Planned 0 2000 4000	2928	0		
PREPA Palo Seco	Completed Planned 0 50 100	0	72		
PREPA San Juan	Completed Planned 0 2000 4000 6000	4512	3582		
FEMA Palo Seco	Completed Planned 0 0.5 1	0	0		
Total Baseload	Completed Planned 0 5000 10000 15000	10608	6614		

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Maintenance Outage Hours – Baseload Units

Maintenance Outage Hours represent the shutdown of a generating unit or facility for nonemergency reasons or conditions which need repair outside of the advance schedule; represented in hours per unit.

Target: **v** Less maintenance hours represents more available capacity in the system to meet demand.

	Maintenance Outage Hours	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
AES	40 20 0 S O N D J F M A M J J A	0	0	0	0	0	24	0	0	0	0	0	0
EcoElectrica	40 20 0 SONDJFMAMJJA	0	3	0	0	0	0	24	0	0	0	0	0
PREPA Aguirre	50 0 S O N D J F M A M J J A	0	0	0	0	0	0	44	0	0	0	0	0
PREPA Costa Sur	100 50 0 S O N D J F M A M J J A	0	0	0	90	0	0	0	0	0	35	0	0
PREPA Palo Seco	100 50 0 S O N D J F M A M J J A	71	18	0	0	0	0	0	0	0	0	0	0
PREPA San Juan	500 O S O N D J F M A M J J A	0	19	137	421	0	2	39	37	0	0	0	0
FEMA Palo Seco	20 10 0 S O N D J F M A M J J A	0	0	0	0	0	0	0	0	0	0	11	0
Total Baseload	1000 500 0 S O N D J F M A M J J A	71	40	137	511	0	26	107	37	0	35	11	0

Forced Outage Hours and Rate – Baseload Units

Forced Outage Hours represent the shutdown of a generating unit or facility for emergency reasons or a condition in which the generating equipment is unavailable for load due to an unanticipated breakdown; represented in hours per unit. The Forced Outage Rate represents the percentage of time the unit was in a Forced Outage condition out of the total time the unit was expected to be available.

Target: **v** Less forced outage hours and a smaller outage rate represents more available capacity in the system to meet demand.

	Forced Outage Hours and Outage Rate	5	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
AES	100% 50%	Hrs	543	36	175	178	173	0	384	249	0	25	505	0
	0% , , , , , , , , , , , , , , , , , , ,	%	38%	2%	12%	12%	12%	0%	27%	17%	0%	2%	34%	0%
EcoElectrica	100%	Hrs	118	211	0	4	0	0	30	5	0	13	0	72
	0% SONDJEMAMJJA	%	5%	10%	0%	0%	0%	0%	2%	0%	0%	1%	0%	3%
PREPA Aguirre	100%	Hrs	899	1055	1180	720	815	720	768	778	1166	823	855	800
	0%	%	67%	71%	82%	48%	75%	94%	56%	54%	78%	57%	57%	54%
PREPA Costa Sur		Hrs	268	553	46	0	0	153	0	0	139	116	771	743
	0% SONDJFMAMJJA	%	19%	37%	3%	0%	0%	11%	0%	0%	9%	8%	52%	50%
PREPA Palo Seco		Hrs	2198	2250	2120	1572	1537	1395	1598	1498	1525	1751	1704	2293
	SONDJFMAMJJA	%	80%	77%	74%	53%	52%	52%	54%	52%	51%	61%	57%	77%
PREPA San Juan	50%	Hrs	2432	3000	3071	2930	3174	2063	2449	2342	2421	2196	2328	2489
	0% SONDJFMAMJJA	%	42%	51%	55%	64%	55%	40%	46%	47%	45%	40%	39%	42%
FEMA Palo Seco		Hrs	0	0	0	0	0	0	0	0	0	0	76	0
	0% SONDJFMAMJJA	%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%
Total Baseload		Hrs	6458	7105	6592	5405	5699	4330	5228	4872	5251	4923	6240	6399
	0%	%	43%	45%	44%	35%	36%	31%	33%	32%	34%	33%	30%	31%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Renewables Capacity Factor - Solar

The Capacity Factor measures the actual production of electricity over the theoretical maximum output (nameplate capacity). For Renewable projects, the Capacity Factor is expected to be lower due to the solar and wind cycles.

Target: A higher Capacity Factor represents a better utilization of the maximum capacity the project is able to produce.

ingrier eapaeity													caran in	ann oap	aony and	project	10 0.010	le preda	00.						
		Ave	rage	e Pro	odu	ctior	n (M	W)	and	Ca	pacit	y Fact	or	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-2
AES Ilumina	20 10 0												MM	3	4	4	3	4	4	4	4	4	4	4	4
Nameplate Cap: 20		S	0	Ν	D	J	F	М	А	Μ	J	J A	CF	16%	19%	18%	17%	19%	21%	22%	22%	21%	21%	20%	20%
Windmar Cantera Martinó	2.0 1.0 0.0												MM	0.3	0.5	0.4	0.5	0.5	0.5	0.6	0.5	0.5	0.4	0.5	0.5
Nameplate Cap: 2.1	0.0	s	0	Ν	D	J	F	М	А	М	J	J A	СF	15%	22%	21%	23%	22%	26%	29%	24%	24%	21%	23%	22%
San Fermín	20 10												MM	1	2	2	2	2	3	3	3	3	3	3	3
Nameplate Cap: 20		S	0	Ν	D	J	F	Μ	А	Μ	J	J A	CF	6%	8%	10%	12%	11%	13%	14%	14%	13%	14%	13%	139
Horizon Energy	10 5												MM	2	2	2	2	2	2	3	3	3	3	3	2
Nameplate Cap: 10	0	S	0	Ν	D	J	F	М	A	Μ	J	J A	CF	17%	23%	22%	23%	24%	25%	28%	28%	28%	26%	27%	23%
Oriana Energy	40 20 0												MM	8	9	9	9	10	11	10	11	11	11	11	10
Nameplate Cap: 45		S	0	Ν	D	J	F	М	А	Μ	1	J A	CF	17%	19%	20%	20%	21%	24%	23%	25%	25%	24%	24%	219
Windmar Coto Laurel	10 5 0												MM	1	2	2	2	2	2	2	2	2	2	2	2
Nameplate Cap: 10	ľ	S	0	Ν	D	J	F	Μ	А	Μ	1	J A	CF	14%	21%	20%	22%	20%	22%	22%	20%	21%	21%	23%	229
Fonroche Humacao	40 20 0												MM	5	7	7	7	7	8	8	9	8	9	8	8
Nameplate Cap: 40		S	0	Ν	D	J	F	Μ	А	Μ	1	J A	CF	14%	18%	17%	18%	18%	21%	19%	22%	21%	22%	21%	199
Total Solar	140 70 0												MM	21	26	26	27	28	31	31	33	32	32	31	29
Nameplate Cap: 147		S	0	Ν	D	J	F	Μ	А	М	J	A L	СЕ	14%	18%	18%	18%	19%	21%	21%	22%	22%	22%	21%	209

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Renewables Capacity Factor – Wind and Landfill

The Capacity Factor measures the actual production of electricity over the theoretical maximum output (nameplate capacity). For Renewable projects, the Capacity Factor is expected to be lower due to the solar and wind cycles.

Target: A higher Capacity Factor represents a better utilization of the maximum capacity the project is able to produce.

		A	/erage	e Pro	oducti	ion (MW)	and	Сар	acity	Facto	r	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
Pattern Santa Isabel	74 37 0	7										MW	7	10	10	11	14	18	14	13	11	12	20	14
Nameplate Cap: 75	-	S	0	Ν	D J	F	Μ	А	М	1 1	А	CF	9%	13%	13%	14%	19%	24%	19%	18%	15%	15%	27%	19%
Landfill Gas Fajardo	2.4 1.2 0.0	2							_			MW	0.4	0.1	0.2	0.4	0.3	0.5	0.5	0.4	0.7	0.5	0.5	0.4
Nameplate Cap: 2.4		1	s o	Ν	DJ	J F	М	А	Μ	1 1	А	CF	16%	6%	9%	18%	12%	20%	22%	15%	28%	22%	21%	16%
Landfill Gas Toa Baja	2.4 1.2 0.0	2	_			_			_	_		MW	0.7	0.9	0.6	0.5	0.6	0.8	0.6	0.8	0.6	0.9	1.3	0.9
Nameplate Cap: 2.4		9	5 O	Ν	DJ	J F	М	А	Μ	1 1	А	CF	31%	36%	26%	21%	24%	32%	27%	32%	24%	39%	55%	36%
Total Wind and Landfill	80 40 0											MM	8	11	11	12	15	19	15	14	12	13	22	16
Nameplate Cap: 80		S	0	Ν	D J	F	Μ	А	Μ	1 1	А	CF	10%	14%	14%	14%	19%	24%	19%	18%	15%	16%	27%	20%

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Fuel Prices

Fuel Price shows the prices paid for fuel used by PREPA and private generators, both in terms of MMBtus and Barrel of Oil Equivalent (BOE). The Fuel Price is divided by Fuel Type to better illustrate the contribution to the total Fuel Price for the month.

Historical Fuel Price (\$/BOE)

\$/MMBtu	Sep-22	Oct-22	Nov-22	Dec-22	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23
Diesel	28.03	30.23	31.20	26.95	26.77	26.93	25.60	24.84	23.02	23.88	21.61	23.01
Residual	18.84	18.41	17.26	16.75	15.98	16.67	15.62	15.57	14.86	14.75	16.29	15.37
Natural Gas	16.90	14.94	12.35	13.32	11.36	10.02	9.19	8.34	8.77	8.73	9.18	8.62
Coal	4.63	4.63	4.63	4.62	4.68	4.68	4.73	4.80	4.80	4.80	4.60	4.79
\$/BOE												
Diesel	162.18	174.68	180.89	154.70	156.31	155.24	148.87	143.93	143.30	124.61	125.28	133.24
Residual	117.24	114.41	107.37	104.42	99.14	102.69	97.22	97.19	92.75	92.01	93.14	96.34
Natural Gas	100.24	86.67	72.11	78.82	67.47	58.05	54.41	49.88	51.27	51.62	54.32	51.23
Coal	26.83	26.83	26.83	26.83	27.14	27.16	27.43	27.86	27.86	27.86	26.68	27.78

Variable Production Costs

Variable Production Costs are predominantly fuel costs and reflect the cost to produce one MWh of energy. In the graph, the cost is shown separately for Baseload units and Peaker units. The weighted average cost indicates the cost per MWh of energy produced for the System Portfolio.

Variable Production Costs (\$/MWh)

Baseload Prod. Cost Peaker Prod. Cost

*Refer to Glossary of Terms on page 22 for a list of definitions and formulas.

Glossary of Terms

Term	Definition	Formula
Heat Rate	Measures the efficiency of a power plant to convert fuel into electricity. It is the amount of energy used by a power plant to generate one kilowatt-hour (kWh) of electricity. The more efficient the generator is, the lower the heat rate.	MMBtu consumption by all units in the station during a specific period / MWh produced by the same units in the same period
Reserves	Amount of generating capacity available to meet peak or abnormally high demands for power and to generate power during scheduled or unscheduled outages.	Available Capacity (MW) during the reported period minus the Actual Generation (MW) during the same period
Available Capacity	The maximum output, commonly expressed in megawatts (MW), that generating equipment can supply to system load, adjusted for scheduled or unscheduled outages.	N/A – value is provided for each unit
Availability Rate	The ratio of the maximum output that can be supplied to system load for the period of time considered to the nameplate capacity.	Average available capacity for a specific period (MW) / nameplate capacity
Production	The amount of electric energy produced.	N/A – value is provided for each unit
Capacity Factor	The ratio of the electrical energy produced by a generating unit for the period of time considered to the nameplate capacity.	The average energy produced by all units in the plant during a specific period (MWh) / Nameplate capacity for the plant
Planned Outage Hours	 The shutdown of a generating unit or facility for inspection or maintenance, in accordance with an advance schedule; represented in hours per unit (Equivalent Planned Outage Hours). Planned Hours – hours provided in the Generation Outage Schedule for the following 90-day outlook. Actual Hours – number of hours a unit was out of service due to a planned outage. 	N/A – values is provided for each unit
Maintenance Outage Hours	The shutdown of a generating unit or facility for nonemergency reasons or conditions which need repair outside of the advance schedule; represented in hours per unit.	N/A – value is provided for each unit
Forced Outage Hours	The shutdown of a generating unit or facility for emergency reasons or a condition in which the generating equipment is unavailable for load due to unanticipated breakdown; represented in hours per unit.	N/A – value is provided for each unit
Forced Outage Rate	The ratio of the forced outages hours to the hours the unit was anticipated to be available for the reporting period.	Forced Outage Hours / Period Hours (excluding planned and unplanned outage hours)
Nameplate Capacity	The maximum rated output of a generator, prime mover, or other electric power production equipment under specific conditions designated by the manufacturer.	N/A – value is provided for each unit
Generation Shortfall Events	An event in which customer demand exceeds available supply levels and LUMA, as the system operator and in compliance with its responsibilities under the T&D OMA, implements load shedding to stabilize the electric system and prevent larger and longer outages.	N/A – Value is all events which occur in a specified time frame
Unit Performance Load Shed Events	An event in which a generating unit has an unanticipated trip and causes customers to be automatically disconnected from the grid to prevent potential damage to the system.	N/A – Value is all events which occur in a specified time frame

Plant and Unit List – Baseload and Peaker Units

Plant Units ss-a-1-32 so-a-3-3 ss-a-3-3-33 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3 ss-a-3-3-3-3 ss-a-3-3-3-3 ss-a-3-3-3-3 ss-a-3	PEAKER UNITS						
CT5 X <th>Renewables Capacity Factor</th>	Renewables Capacity Factor						
San Juan CT 6 X <th< td=""><td></td></th<>							
San Juan STM 6 X <t< td=""><td></td></t<>							
San Juan STM 6 X <t< td=""><td></td></t<>							
7 X <td></td>							
8 X							
Image: book of the second o							
10 X							
Solution Solutity is andial and is and is andited and in the and indial and is a							
Costa Sur 6 X X X X X A Aguirre 1 X <td></td>							
Aguirre 1 X <t< td=""><td></td></t<>							
Palo Seco							
4 A A A A A A A A							
AES 1 X X X X X MP3 X X X X Culebra 2 X X X X							
AES 2 X <td></td>							
ECO 1 X X X X X II I-2 X X X X X	l						
EcoEléctrica ECO 2 X X X X X A I I-3 X X X X X	l						
STM 1 X X X X A I I-4 X X X X X	l						
GT 1 X X X Aguirre CC ST-1 X X X X	l						
GIZ X X X I GI G							
FEMA Palo GT 4 X X X X III-2 X X X X X							
Secolution							
GT 6 X X X X III-4 X X X X X							
GT 0 X X X GT 7 X X X							

Plant and Unit List – Renewable Projects

SOLAR PROJECTS								HYDRO PLANTS												
Projects	System Reserves	System Availability	System Heat Rate	All Metrics for Baseload Units	All Metrics for Peaker Units	Renewables Capacity Factor	Projects	System Reserves	System Availability	System Heat Rate	All Metrics for Baseload Units	All Metrics for Peaker Units	Renewables Capacity Factor	Projects	System Reserves	System Availability	System Heat Rate	All Metrics for Baseload Units	All Metrics for Peaker Units	Renewables Capacity Factor
AES Ilumina						х	Pattern Santa						х	Caonillas 1-1						
							Isabel							Caonillas 1-2 Caonillas 2-1						
Cantera						х	Landfill Gas						х	Dos Bocas 1						
Martinó						^	Fajardo						~	Dos Bocas 2						
/							Landfill Gas							Dos Bocas 3						
San Fermín						Х	Тоа Ваја						Х	Garzas 1-1						
												1		Garzas 1-2						
Horizon Energy						Х								Garzas 2-1						
														Patillas 1-1						
Oriana Energy						Х								Patillas 1-2						
														Rio Blanco 1-1						
Coto Laurel						х								Rio Blanco 1-2						
														Toro Negro 1-1						
Humacao						v								Toro Negro 1-2						
Humacao						Х								Toro Negro 1-3						
														Toro Negro 1-4						
														Toro Negro 2-1						
														Yauco 1-1						
														Yauco 2-1						
														Yauco 2-2						